ASU project to give satellites a shared, optical language


Satellite seen from space as it orbits Earth.
|

In military operations and other communications channels of a sensitive nature, stovepiping is a structure that keeps the flow of information within a specific organization. 

When it comes to communication between satellites and their interested parties on the ground, stovepiping can be counterproductive.

Space-BACN, or Space-Based Adaptive Communications Node, a new initiative from the Defense Advanced Research Projects Agency (DARPA), seeks to develop low-cost, high-speed, configurable optical data links that can connect low Earth orbit satellites with each other and with their Earth-bound proprietors, which can come from military, government, corporate and private sectors. 

Arizona State University’s Center for Wireless Information Systems and Computational Architectures (WISCA) was awarded $5.4 million for the first phase of the program in the reconfigurable modem technical area. WISCA is the only university research center recipient of a Space-BACN project, with the others going to major corporations.

“Our new processor technology has the potential to revolutionize space communications,” explained ASU Professor Daniel Bliss, director of WISCA and lead investigator on the project. “Optical communications enables the exchange of large quantities of data between satellites. However, there are many standards, and these communications approaches evolve over time.

“The WISCA team will enable a revolution in flexible space optical communications for the next generation of low-cost satellites by developing a new class of processor that can nearly instantly reconfigure while being almost as efficient as a full-custom, single-purpose chip.

“In developing our new modem processor, we provide a path to quickly switch between standards and even implement new standards after the system is built and launched.” 

Previous WISCA work with DARPA includes the Domain-Focused Advanced Software-Reconfiguration Heterogeneous (DASH) System on Chip (SoC), which built a new framework for high-performance, embedded, heterogeneous computer processors with increased power and higher efficiency.

“Space-BACN will further the processor development we did for DASH and has the potential to efficiently provide the embedded processing capabilities needed for a wide range of applications, from 6G to flying cars,” Bliss said.

“In an attempt to celebrate the exciting advances of the Space-BACN program, we entitled our project: Configurable Optical Communications via Heterogeneous-processing Optimized Node (COCHON).”

Other partners in the WISCA project are the University of Michigan, the University of Wisconsin at Madison, the University of Arizona, Jariet Technologies and DASH Tech Integrated Circuits, an ASU technology spin-out. 

More Science and technology

 

Image of a robot in running position

Lessons on maintaining your humanity in the world of AI technology

AI is not human. But it does a good job of acting like it.It is capable of replicating how we speak, how we write and even how we solve problems.So it’s easy to see why many consider it a threat, or…

A computer monitor shows images of dogs

When you’re happy, your dog might look sad

When people are feeling happy, they’re more likely to see other people as happy. If they’re feeling down, they tend to view other people as sad. But when dealing with dogs, this well-established…

Professor Yohannes Haile-Selassie and his crew at one of the picking operations following a hominin discovery at Woranso-Mille. Photo by Dale Omori.

New research by ASU paleoanthropologists: 2 ancient human ancestors were neighbors

In 2009, scientists found eight bones from the foot of an ancient human ancestor within layers of million-year-old sediment in the Afar Rift in Ethiopia. The team, led by Arizona State University…