June 30, 2020
Since Apollo, Arizona State University's reach into space has aimed higher every decade
The solar system could be Arizona State University’s fifth campus.
Twelve instruments developed at the university are “in flight,” in space parlance: two over the Earth, seven at Mars, one over the moon and two over asteroids.
Construction of the first interplanetary spacecraft built on campus was completed this summer.
Only 30 institutions in the United States can build spacecraft. Only seven build interplanetary“Interplanetary” means anything that leaves Earth’s gravity. Internationally, 40 countries can build spacecraft, but only four can build interplanetary spacecraft. spacecraft.
ASU is one of them.
Twenty-nine members of the faculty and staff have asteroids named after them, including planetary scientist Lindy Elkins-Tanton, who is leading a NASA Discovery mission to an all-metal asteroid, something that’s never been explored before. She is the second woman in NASA history to lead a deep space mission.
Nineteen faculty members are engaged in space missions. Eight instruments — things like cameras, spectrometers and thermal imagers — are in development. One will fly over asteroids, two over Mars, one over the moon and four over Jupiter's moon Europa.
Ten missions are in development. Two will look at exoplanets. One will search for ice on the moon, to be used for water and fuel in off-world exploration. Five telescopes will peer at star formation, more than 300 million galaxies, and dust clouds where stars are forming, among other celestial mysteries. One mission may answer the ultimate scientific question by discovering life off Earth, in a liquid ocean deep below an icy crust on one of Jupiter’s moons. One will explore the all-metal asteroid Psyche.

Graphic by Alex Cabrera/Media Relations & Strategic Communications
These aren’t the university’s first outings by a long shot, however.
ASU has played a role in 25 missions to eight planets, three asteroids, two moons and the sun.
“We are one of the big boys, so to speak, providing so many services and needs, and supporting NASA in so many ways, and (connecting) personally person-to-person on so many different levels,” Elkins-Tanton (Asteroid (8252) Elkins-Tanton) said. “And, you know, that's how business gets done in this world. It's the people who know you and who you know, and who can you call on when you need help or who calls on you when they need help.”
The School of Earth and Space Exploration was created in 2006. As an institution however, ASU’s space program started much longer ago.
This is the story of how a humble geology program grew into a powerhouse of space exploration. It began with a meteorite-obsessed geologist, the Apollo moon landings, a cranky dean and two battered filing cabinets.
Meteorite man
In the early 1960s, the university asked geologist Carleton Moore to study meteorites. He became absolutely hooked, to the point where he would skip lunch in favor of spending more time on the microscope. Moore purchased a collection of 700 meteorites in 1961, which became the basis for the Center for Meteorite Studies, now the largest university collection in the world.
Moore is a celebrity in the meteorite world. When he appears at the Tucson Gem and Mineral Show, he is mobbed like a rock star.
In 1967, Moore (Asteroid (5046) Carletonmoore) was one of the first people asked by NASA to analyze rocks and dust brought back from the moon. He taught on the weekdays and NASA flew him to Texas on the weekends. In 1977, Moore hired a scientist named Ron Greeley.
Greeley was a pioneer in planetary geology.
Rocks and fighter jocks
Greeley (Asteroid (30785) Greeley) helped select landing sites for the Apollo missions and assisted in geologic training for astronauts.
Back in the Apollo days, science was incidental to missions. Engineers — who just wanted to put boots on the moon — frequently clashed with scientists, who wanted to do at least a few things as long as we were going all that way.
One famous story illustrating the rift centered around a geologist who suggested a rock hammer be included in an astronaut’s tool bag. “But we took one of those on the last mission!” an engineer exploded.
Early astronauts tended to be fighter jocks who weren’t much interested in rocks either. Greeley succeeded in educating them to be more sophisticated than describing rocks as big or little, and how to differentiate between an interesting rock and a more prosaic sample.
“He was trying to get them to think about the geology and the rocks and what to look for when they got to the moon,” ASU Professor Phil Christensen said. “If you listen to the transcripts of those astronauts, Ron and others who trained them did a fantastic job. There were a few (astronauts) who were classic test pilots, Navy guys on an adventure and, 'Oh, I picked up a few rocks.' Most of them did a good job.”
The Ron Greeley Center for Planetary Studies at ASU is one of 17 regional sites NASA has designated to archive images for educational and scientific use.
The wunderkind
If Greeley and Moore were the founding fathers of ASU’s space program, Christensen is the founder of what the program has become.
The director of the Mars Space Flight Facility in the School of Earth and Space Exploration, Christensen is also a Regents ProfessorRegents professors are top tenured faculty who have made significant contributions to their field. of geological sciences. He is a planetary geologist and an "accidental" engineer. He has three instruments in flight, three in development, and knows the surface of Mars like the inside of his house.

Lindy Elkins-Tanton and Phil Christensen at a School of Earth and Space Exploration event. Photo courtesy Arizona State University
Back in 1981, Greeley hired the young postdoc who was starting to get involved in space missions. Christensen won a big NASA grant to put an instrument on one of the Mars orbiters.
Greeley was a brilliant field geologist and planetary scientist, but he wasn’t an instrument guy, Christensen said.
“Ron was a pioneer in looking at the data that came back from these probes, looking at images of the moon and Mars and analyzing them, thinking about them,” he said. “He had no interest in building the instruments, building the cameras, building the spectrometers. … He was on the team, he had access to the data, he was a leader in the field, but he was mostly looking at data that existed and doing the usual science. That’s what ASU did. They didn’t build anything.”
When Christensen (Asteroid (90388) Philchristensen) won a huge contract to build an instrument, you would expect people to have jumped for joy.
Quite the opposite happened.
What are you thinking?
When the first proposal was selected, a dean called Christensen into his office. He thought he was going to be congratulated.
“He says, ‘Close the door. What in the hell are you thinking?’” Christensen said. “‘Do you have any idea how difficult you’ve made my job? We don’t have the ability to do this. We can’t manage contracts like that. I don’t have any space to put you. You have no idea how difficult you’ve made my job.’ Needless to say that dean isn’t at ASU any more.”’
Christensen asked an associate dean for office space.
“He said, 'Well, there’s a couple of filing cabinets you can have.’ They just didn’t get it. We had this 10, 20 million dollar contract. It was the biggest contract ASU had ever done. They had no idea how to do it. They had no idea how to deal with an aerospace company. So to go from someone offering me two file cabinets to (the current space program and state of the art facilities) … there’s been a lot of changes at this university. It’s been really amazing to watch this grow.”
Jim Bell is a planetary scientist in the School of Earth and Space Exploration. He has roles on three missions currently in flight, including the camera on the Curiosity rover which has been crawling around Mars for the past eight years, and five other instruments and missions in development. Next month his latest camera will launch from Cape Canaveral on Perseverance, NASA’s newest Mars rover. He is also director of the New Space Initiative at ASU.
The latter is a program that connects students and faculty doing space-related work with outside entities doing the same thing. They range “from SpaceX to a couple of teenagers in a garage,” Bell said. “Where do they need our help? Can you do a mission for 1% of the cost of a big NASA mission?”
Until now, ASU’s space program has revolved around making instruments, which are snapped up by NASA. ASU faculty have been involved with all of NASA’s robotic missions.
“NASA knows us scientifically, but also from an engineering standpoint,” said Bell (Asteroid (8146) Jimbell), who has built several cameras for the agency.

Jim Bell working in a lab. Photo courtesy Arizona State University
And that is because of Christensen and Greeley.
“Those two guys were part of the bedrock foundation of the NASA work here at ASU,” Bell said. “Oh man. That's a great story. Greeley and Moore are the guys who really got ASU on the map in terms of planetary science and meteorites studies, going back to the '60s. They were able to attract great people and get federal funding and grow a great group … they were able to create pockets of excellence around space and space science and commissions, robotic missions, sample analysis, et cetera. Greeley was able to attract Phil Christensen who got even deeper involved and got some real instrument wins for the university. Good people attract other good people to their orbit.”
How to woo NASA
In the early 1980s, NASA picked the University of Arizona to run a Mars mission. The university asked Christensen if he could build an instrument for it. At the same time, Raytheon shut down the Santa Barbara facility where Christensen had been working. Three or four of his colleagues became available. He thought if they came in, and ASU helped out, an instrument could be built at ASU. The instrument they wanted was very similar to one they had already built.
“It was a perfect storm,” Christensen said. “We were one instrument that was part of a bigger project. It wasn’t a huge risk to NASA to pick the UofA to run this mission and one of the instruments will be built at ASU. It was very similar to what we’d built before. And ASU said, ‘We’ll build this fancy new facility.’ … It was fortuitous that everything came together just right."
They worked their tails off for five years.
“This was a one-shot deal,” Christensen said. “Reputation works both ways. If we screw this up, they’re never going to talk to ASU again. Fifteen people on this project took that really seriously. Not just their careers; ASU had spent a lot of money on this building and these facilities. There was a lot riding on us succeeding. People took a lot of pride in this succeeding. And it did.”
The campus where spacecraft are built
Before then, ASU had no place to build instruments or spacecraft.
“Now we can build a NASA flight-quality instrument in this building,” he said. “Ten years ago we would have laughed: ‘We can’t do that. We don’t have the facilities, the people, the credibility.’ But we’ve done it. And now because of that people are coming to me to build them instruments for Europa and other missions. Jim Bell can say we can build and test cameras here. We have new faculty coming in. Ten years from now there will be several people building instruments in this building.”
Now instruments, satellites and spacecraft are built on campus. The LunaH-Map mission is entirely ASU’s. It was developed, designed and built here.
“A NASA mission is 90% about the process,” Christensen said. “How do you do it? How do you make it work? All things you have to do, all the people working together, keeping them together, keeping them from killing each other — to me that’s half the fun. … Within NASA, like a lot of other places, it’s all about reputation. Can you do it? Once you can, that’s a huge step. Suddenly you’re building more, and people come because of that. It sort of mushrooms.”
Clean rooms
The university’s physical investment in its space program has come a long way from two battered filing cabinets.
The 300,000-square-foot Interdisciplinary Science and Technology Building IV opened in 2012. It boasts labs, clean rooms, offices, high bays, a 250-seat auditorium and one of two mission operations centers on campus.