ASU awarded $6.4M grant to test preventive cancer vaccine for dogs


border collie lying down in grass

Editor's note: This story is being highlighted in ASU Now's year in review. Read more top stories from 2018 here.

The Open Philanthropy Project awarded a multi-year grant of $6,421,402 to Stephen Albert Johnston at Arizona State University to support the largest interventional canine clinical trial ever conducted. The trial will assess the effectiveness of a unique vaccine in preventing any type of cancer in dogs. 

The trial will enroll at least 800 owners’ pets to test the efficacy of a novel vaccine to prevent cancer.

“Our goal has always been, that if this is possible, we should at least try it,” said Johnston, who directs the Biodesign Center for Innovations in Medicine and is a professor in the School of Life Sciences. “Open Philanthropy was the only organization that responded to support our high-risk project, the biggest cancer intervention trial in dogs ever. I really admire them for that.”

Searching for a vaccine

It is widely thought that all cancers are unique and therefore a general, preventative vaccine would not be possible. However, Johnston’s team has discovered a potentially high-impact way of identifying tumor antigens that are common among cancers; these make up the key components of their vaccine.

The new vaccine, called a multi-valent frameshift peptide (FSP) vaccine, was developed by Johnston and his team over the last ten years. The vaccine already has been tested for efficacy in mice and is shown to be safe in dogs.

Johnston and his team eventually want to take the next leap and test the vaccine in humans. However, they feel that first testing the vaccine in dogs has many advantages. 

Cancer is the leading cause of death in pet dogs and their cancers are very similar to their human counterparts. Some breeds have a very high cancer rate, as much as 40 percent. The canine immune system responds to tumors and vaccines similarly to that of humans, but the course of tumor development in dogs is much shorter. Johnston thinks they can evaluate the effectiveness of the vaccine in five years or less, versus the 15 to 20 years it would take in a human trial. The vaccine they are testing in dogs will have a comparable composition to the one they would test in people.

“We have been working over 10 years to develop a vaccine that could potentially prevent any cancer,” said Luhui Shen, senior science director of the vaccine project. “Our next goal is to test the vaccine in owner-enrolled, healthy dogs. We are fairly confident that if the vaccine works in dogs, it could work in people.”

How the trial will work

The trial will be conducted under the direction of Douglas Thamm, director of clinical research at the Flint Animal Cancer Center at Colorado State University. Healthy, middle-aged pet dogs will be enrolled, continuing to live their normal lives at home and receiving biannual exams with a complete clinical pathology workup. 

Dogs will be randomly chosen to receive either the vaccine or a mock version. Dogs receiving the mock vaccine are expected to develop cancer at normal rates. The experiment will determine whether the test vaccine can prevent cancers.

Any owner whose dog develops cancer during the trial, on either the test or control arm, will be given a credit toward medical expenses.

If successful, this trial would provide strong support for the concept of employing FSP vaccines to prevent cancer in its earliest stages, possibly leading to a canine cancer vaccine, and could eventually justify human clinical trials for both treatment and prevention.

“We consider this a high-risk project with an unusual opportunity for high impact as it could possibly reduce the incidence of cancer and cancer metastasis,” the Open Philanthropy Project grant announcement said. “We believe cancer preventative vaccines have a higher expected value than curative cancer therapies, since an effective vaccine would likely be a less expensive way to provide decades of healthy life compared to current cancer therapies, which often only extend life for a few months or years. We also believe cancer vaccines would be tractable in developing countries, which have a high cancer burden. FSP vaccines are particularly attractive compared to other proposed cancer vaccines because they may work against many cancer cell types.”

A daring gift

Cancer is increasingly placing a toll on developing countries, according to a World Health Organization (WHO) report published in 2010. The latest WHO statistics cite that cancer causes around 7.9 million deaths worldwide each year. Of these deaths, around 70 percent, or 5.5 million deaths, are now occurring in the developing world. A disease once associated with affluence now places its heaviest burden on the poor and disadvantaged who can not afford the advanced treatments available in developed countries, some of which cost $200,000 or more. 

“If the vaccine works it should be inexpensive enough that everyone in the world could get it,” according to Johnston.

Johnston foresees this commitment on the Open Philanthropy Project’s part to be an inspiration to other philanthropic efforts to be more daring and risk-taking.

“It wasn’t easy to identify an organization interested in funding such a trial,” Johnston said. “Open Philanthropy came to us, rigorously reviewed our proposal and offered to fund the trial. We are extremely grateful that they would support this high-risk effort.  This vaccine may not work, but if it does it will be thanks to the commitment of Open Philanthropy to funding potentially transformative efforts.”

Johnston is the director of the Biodesign Center for Innovations in Medicine and CEO of Calviri, Inc, a cancer vaccine company. He is known for his success as an innovator, inventor and disruptor of conventional science.

Johnston and his interdisciplinary team have developed a system for continuous, comprehensive, inexpensive health monitoring known as immunosignature diagnostics. More recently, his team successfully answered a call from the U.S. Department of Defense via the Defense Advanced Research Program Agency, or DARPA, to develop a technique for producing 1,000 doses of an antimicrobial in a week — a discovery that will potentially safeguard populations that are threatened by infections and outbreaks of Ebola and Zika.  

Top photo courtesy of Pixabay.com.

More Science and technology

 

Photo of a 3D model of bacteria.

ASU researcher part of team discovering ways to fight drug-resistant bacteria

A new study published in the Science Advances journal featuring Arizona State University researchers has found vulnerabilities in certain strains of bacteria that are antibiotic resistant, just…

Two scientists in a lab observe a microchip.

ASU student researchers get early, hands-on experience in engineering research

Using computer science to aid endangered species reintroduction, enhance software engineering education and improve semiconductor material performance are just some of the ways Arizona State…

Gail-Joon Ahn works with a colleague in his office.

ASU professor honored with prestigious award for being a cybersecurity trailblazer

At first, he thought it was a drill.On Sept. 11, 2001, Gail-Joon Ahn sat in a conference room in Fort Meade, Maryland. The cybersecurity researcher was part of a group that had been invited…