Skip to main content

Catching some rays at ASU solar camp

High schoolers get hands-on experience with the science behind solar


Solar camp
|
July 28, 2016

Scorching, squinting, sweating and learning — welcome to Arizona State University’s Solar Energy Camp, the hottest camp at the hottest university in the hottest state.

On a sizzling July morning down at the university’s Polytechnic campus, six students are setting up solar panels and attaching various measuring devices to them.

Joo Seung, 16, came from San Diego for the weeklong camp. He has been interested in renewable-energy sources since he was in elementary school.

“This year I was reaching out to find out where I could learn about solar energy,” he said.

Everything he found in California was geared toward college students. Seung did some of his own research on the internet but ended up getting lost in overly technical texts. He said he much preferred learning in class, with material that wasn’t aimed at someone with a doctorate in electrical engineering, which is where he said he wants to end up.

“I’ve learned a lot,” Seung said. “A lot of the resources (professor Arunachala Kannan) gave us were very informing.”

Kannan, a professor in the Engineering and Manufacturing Engineering Program in the Ira A. Fulton Schools of Engineering, provided each student with a kit including a battery, inverter, solar panel and other components. When assembled, it is a standalone system.

“The purpose is to give them basic electrical parameters,” Kannan said. He keeps lectures to a half-hour —  it’s a camp, not a class — and then they get to work.

“I think they’re excited about doing hands-on,” he said.

They learn how solar modules work, power performance, safety and which parameters control performance. One aspect of the latter? “Once you get above 100 degrees, performance is not good,” Kannan said.

Panels need to be washed off. Dust hampers their performance. The most famous example of this is when the Curiosity rover stopped working on Mars because its solar panels were dusty. Scientists expected this, and they predicted that was it for the rover. However, wind blew the dust off, and Curiosity is still going strong.

The students set up panels in the sun on a sidewalk, measuring their angle and direction. The panels have sundials on them. At the end of camp, the students are responsible for a report including notes, pictures and measurements. It’s meant to cement what they’ve learned into their heads.

“When they submit a report, many things become clarified,” Kannan said.

Michael Geddis, 16, attends the American Leadership Academy high school in Queen Creek. The school has a STEM program that requires attending an outside enrichment program. They provide students with a list of possibilities, including Poly’s Solar Energy Camp.

“I really like the labs because I’m learning a lot,” said Geddis. “I like to learn.”

Top photo: Carlos Nunez, 15, of Tempe, and other members of Solar Energy Camp adjust the angle of their panels on the Polytechnic campus on July 13. Photo by Charlie Leight/ASU Now

More Science and technology

 

A hand holding a pile of dirt next to an insect.

Advances in forensic science improve accuracy of ‘time of death’ estimates

Accurate “time of death” estimates are a mainstay of murder mysteries and forensic programs, but such calculations in the real world are often complex and imprecise. In a first-of-its-kind study,…

ASU assistant professor of chemical engineering Kailong Jin in a lab

Unpacking a plastic paradox

Demand for plastics exists in a constant paradox: thin yet strong, cheap yet sophisticated, durable yet degradable.  The various traits of plastics are determined by the polymer used to make the…

Two people wearing protective clothing work in a lab

New chief operations officer to help ramp up SWAP Hub advancements

Last September, the Southwest Advanced Prototyping Hub — a collaboration of more than 130 industry partners led by Arizona State University — received nearly $40 million as part of the CHIPS and…