Skip to main content

5 ASU faculty receive NSF CAREER awards

Awards total $2.8M in grant funding for researchers


|
July 10, 2023

Researchers at Arizona State University have earned five National Science Foundation early career awards in the last year. The new awards total $2.8 million in funding for ASU researchers in grants that will be used over five years.

The awards show the scope of research being undertaken at ASU and the level of creativity exhibited by each recipient. The work covers a wide variety of science and technology, from improving the performance and reliability of electrical systems to designing new molecules using bio-nanotechnology to advancing new interventions aimed at empowering youth in the juvenile justice system. 

The NSF’s Faculty Early Career Development (CAREER) Program identifies the nation’s most promising young faculty members and provides them with funding to pursue outstanding research, excellence in teaching and integration of education and research. Often, these awards spur the creativity of the faculty member and help set them on an innovative career path. 

"On behalf of the entire ASU academic community, I extend my congratulations to our latest recipients of the NSF CAREER award," said Nancy Gonzales, executive vice president and university provost. "These five scholars, representing a breadth of scholarly disciplines, contribute to ASU's growing count of more than 220 professors who have received this distinction. This remarkable accomplishment underscores the depth of early career talent that comprises our exceptional ASU faculty."

Here is a look at the most recent ASU NSF CAREER award recipients:

Adam Fine, assistant professor, School of Criminology and Criminal Justice 

Fine is a developmental psychologist conducting research at the intersection of psychology, law, public policy and criminology. His work aims to test new ways to empower youths to thrive beyond the juvenile justice system. Fine’s research will develop and test a novel theoretical framework, called the Integrated Youth Development Model, that demonstrates how interdisciplinary approaches can be integrated and distilled into a workable set of core tenets that promotes thriving among justice-involved youths. Read more

Ayan Mallik, assistant professor, The Polytechnic School 

Mallik is an electrical engineer whose research seeks to improve the performance and reliability of electrical systems. His project will focus on building an algorithm that can identify and analyze electrical signals or noise produced as a result of electromagnetic interference. Identifying and analyzing electromagnetic interference noise can help detect flaws in electrical systems and address them early on. This approach aims to help maximize the capabilities of electrical systems and reduce development risks for power equipment suppliers. Read more 

Petr Šulc, assistant professor, School of Molecular Sciences 

Šulc is an interdisciplinary scientist who applies statistical physics and computational modeling methods to problems in chemistry, biology and nanotechnology. His research aims to develop new multiscale models to study interactions between biomolecules, particularly in the context of design and simulations of DNA and RNA nanostructures and devices. Šulc is designing molecules with promising new applications including in diagnostics, therapeutics and new materials. Read more

Ruijie Zeng, assistant professor, School of Sustainable Engineering and the Built Environment 

Zeng’s research aims to reengineer agricultural drainage infrastructure to aid in better water resource management and conservation efforts. His project involves mapping agricultural drainage networks using drones and multispectral imagery to analyze surface soil moisture patterns and help indicate where drainage is occurring. Zeng’s research will provide a tool for decision-makers and stakeholders to talk with individual farmers to develop and advance additional water conservation programs. Read more

Houlong Zhuang, assistant professor, School for Engineering of Matter, Transport and Energy 

Zhuang is conducting research at the intersection of alloy design and artificial intelligence. His project will build on his work by combining alloy design and quantum computing to create quantum algorithms that aid researchers in developing new materials. These algorithms will be implemented using quantum hardware that produces the simulations of the bonds between select elements to predict the best possible combinations of elements to achieve a given material property. Read more

More Science and technology

 

Stock photo of woman with head in hands and stress drawings displayed around her

The science behind chronic stress

Stress comes in many shapes and sizes. There’s the everyday stress of preparing for a final exam or being stuck in traffic. And the more significant stress of losing a friend, family member,…

Portrait of Meenakshi Wadhwa

ASU planetary scientist to be inducted into the National Academy of Sciences

The National Academy of Sciences is inducting School of Earth and Space Exploration Director Meenakshi Wadhwa into the 2023 class of new members for her pioneering work in planetary sciences and…

Adam Cox speaks to an unseen audience, sitting next to another person in a suit

Unlocking the potential of AI for homeland security

“Can we do what we're doing now cheaper, more efficiently, more effectively?” Adam Cox, director in the Office of Strategy and Policy at the Department of Homeland Security Science and Technology…