The edge of habitability: Tracking water in the world’s driest desert

ASU researchers investigate habitability of extreme environments to better understand Earth and Mars


The rugged, flat, dirt of a desert terrain below with a bright blue sky above.

View of the Atacama Desert. Photo courtesy of Donald Glaser

|

Located high in the Andes Mountains in South America, the Atacama Desert is the driest non-polar desert in the world, averaging about 2 millimeters (0.08 inches) of rainfall per year. However, using an innovative method and instrumentation, Arizona State University School of Molecular Sciences (SMS) Graduate Research Associate Donald Glaser found that water-vapor adsorption, the adhesion of water molecules to soil grains, adds as much or more water into the Atacama’s hyper-arid soils as annual rainfall — and is likely a key contributor to the desert’s ability to support life.

This finding, detailed in the October issue of the journal Astrobiology and featured on its cover, provides insight not only into the presence and movement of water on Earth, but also on Mars, the surface of which is extremely dry, similar to the Atacama Desert. If the water-vapor adsorption process observed by Glaser also occurs on Mars, it could help to identify regions of interest in the search for evidence of life on the red planet.

Glaser’s research was conducted in collaboration with SMS Professor Hilairy Hartnett and a highly interdisciplinary team of researchers with expertise ranging from astrophysics to chemistry and biology as part of ASU’s NASA-funded NExSS (Nexus for Exoplanet Systems Science) project, utilizing ASU’s Eyring Materials Center and the METAL (Metals, Environmental and Terrestrial Analytical Laboratory) facility.

“Astrobiology as a field sits at the boundaries of biology, chemistry, physics and geology,” Hartnett said, “and there is a tremendous need for chemists to understand environments on other planets. So these sorts of chemical and physical analyses are very important for understanding what makes extreme environments habitable.”

Making the discovery

While the Atacama Desert is the driest non-polar desert in the world, it is also the world’s largest fog desert, meaning that some moisture supplied to the Atacama Desert comes from fog. Atmospheric water vapor, also minimal in the Atacama Desert, works its way into the soil. This soil moisture is an important source of water for microorganisms that live in the Atacama.

Using a new method and instrumentation he created, Glaser measured soil moisture and soil temperature levels in the Atacama Desert every 20 minutes for two weeks.

“It hadn’t rained in over a year when I was there doing research,” Glaser said. “So this has to be an active process; otherwise, water would have diffused out of the soil.”

Combined with computer modeling and laboratory research, this work provides field evidence for a small but daily input of water into the soils of one of Earth’s driest environments.

“The Atacama Desert is roughly 100 times drier than Phoenix, Arizona,” Glaser said. “So this input of water, although small, is likely crucial. It appears there may be more water than we thought in this extremely dry desert.”

Glaser, who will soon graduate with his PhD, was recently awarded a NASA Postdoctoral Program Fellowship to work on exoplanet habitability modeling at NASA’s Goddard Institute of Space Sciences in New York.

More Science and technology

 

Emily Williamson carries the gonfalon for the School of Computing and Augmented Intelligence down an aisle in a crowded auditorium full of seated graduates

Computer science school looks forward on heels of record-breaking graduation season

This spring, at two packed convocation ceremonies, a crowd of newly minted engineers ebulliently cheered under a rain of…

Large group of people pose for a photo at the top of steps leading up to an outdoor building at the Dedan Kimathi University of Technology campus.

Emerging machine-learning expert leads Kenya AI workshop

What if we already gather all the data we need to help us prepare for disasters, better plan our urban environments and protect…

Galaxy PJ0116-24, known as an Einstein ring

Telescopes in Atacama Desert capture extreme starburst galaxy warped into fiery ring

Ten billion years in the past, a rare population of extreme galaxies formed stars at rates more than 1,000 times faster than our…