ASU, Zhejiang University reach qubit computing breakthrough


Illustration of a computer chip
|

Researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom, have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid state superconducting processor.  

Previously, this was only possible in Rydberg atom systems. 

In a paper that was published on Thursday, Oct. 13, in Nature Physics, ASU Regents Professor Ying-Cheng Lai, his former ASU doctoral student Lei Ying and experimentalist Haohua Wang, both professors at Zhejiang University in China, have demonstrated a “first look” at the emergence of quantum many-body scarring (QMBS) states as a robust mechanism for maintaining coherence among interacting qubits. Such exotic quantum states offer the appealing possibility of realizing extensive multipartite entanglement for a variety of applications in quantum information science and technology to achieve high processing speed and low power consumption.

“QMBS states possess the intrinsic and generic capability of multipartite entanglement, making them extremely appealing to applications such as quantum sensing and metrology,” Ying said.

Classical, or binary, computing relies on transistors – which can represent only the “1” or the “0” at a single time. In quantum computing, qubits can represent both 0 and 1 simultaneously, which can exponentially accelerate computing processes.

“In quantum information science and technology, it is often necessary to assemble a large number of fundamental information-processing units – qubits – together,” Lai said. “For applications such as quantum computing, maintaining a high degree of coherence or quantum entanglement among the qubits is essential.

“However, the inevitable interactions among the qubits and environmental noise can ruin the coherence in a very short time — within about 10 nanoseconds. This is because many interacting qubits constitute a many-body system."

Experimental setup and identification of QMBS states via quantum state tomography

Experimental setup and identification of QMBS states via quantum state tomography. Photo courtesy Arizona State University, Zhejiang University

Key to the research is insight about delaying thermalization to maintain coherence, considered a critical research goal in quantum computing.

“From basic physics, we know that in a system of many interacting particles, for example, molecules in a closed volume, the process of thermalization will arise. The scrambling among many qubits will invariably result in quantum thermalization – the process described by the so-called Eigenstate Thermalization Hypothesis, which will destroy the coherence among the qubits,” Lai said.

According to Lai, the findings moving quantum computing forward will have applications in cryptology, secure communications and cybersecurity, among other technologies.

Collaborators from the School of Physics and Astronomy, University of Leeds, Leeds, U.K., include Jean-Yves Desaules and Zlatko Papić. Hekang Li fabricated the device at Zhejiang University. Other collaborators from Zhejiang University, Hangzhou, China, include Pengfei Zhang, Hang Dong, Jiachen Chen, Jinfeng Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu and Chao Song. Additional contributors include Liangtian Zhao and Jie Hao from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, and Fangli Liu from QuEra Computing, Boston.

Top image courtesy Pixabay

More Science and technology

 

Photo illustration of a notepad checklist for 2025 with classes and a cup of coffee next to it

ASU professor shares the science behind making successful New Year's resolutions

Making New Year’s resolutions is easy. Executing them? Not so much.But what if we're going about it all wrong? Does real change take more than just making resolutions?Michelle Shiota thinks so. …

Computer illustration of a podcast mic with digital waves coming from it

ASU student-run podcast shares personal stories from the lives of scientists

Everyone has a story.Some are inspirational. Others are cautionary. But most are narratives of a person’s path, sometimes a circuitous one, from one point in their lives to another.A new podcast…

Closeup of a gray, jagged meteorite

The meteorite effect

By Bret HovellEditor's note: This story is featured in the winter 2025 issue of ASU Thrive.On Nov. 9, 1923, Harvey Nininger saw his future explode across the Kansas sky. He would become perhaps the…