The new study explores neutral (uncharged) clusters of titania for the first time, tracking the subtle movements of energy using a femtosecond laser and a technique known as pump-probe spectroscopy.

“We treat our lasers like cameras,” Sayres said. “We take pictures of where the energy is flowing over time.”

Sayres, a researcher in the Biodesign Center for Applied Structural Discovery, describes the significance of the current study:

“We've examined the smallest possible building blocks of titania to understand the relationship of how small changes in the material’s atomic structure influences the excited state lifetimes and flow of energy. Learning about how this happens can help redesign better photocatalysts in the future.”

The research will grace the supplementary cover of this publication, which is the premier journal for physical chemistry.

Richard Harth

Science writer, Biodesign Institute at ASU

480-727-0378