Skip to main content

ASU researcher's cancer paper makes top 100

Study caps off 15 years of research aimed at preventing cancer; nearly 5,000 downloads demonstrate interest in new approaches


man's portrait in office

Stephen Albert Johnston directs the Biodesign Center for Innovations in Medicine and is a professor in the School of Life Sciences at ASU. Photo by Andy DeLisle/ASU

April 02, 2020

News that Stephen Albert Johnston’s published approach to cancer prevention is one of 2019’s most downloaded papers in cancer research is testament to scientific interest in breakaway approaches to cancer. Today, Johnston’s paper is 14th most popular among more than 1,000 papers submitted to Nature Scientific Reports from across the world.

“The work we reported represents the foundational research for the vaccines and diagnostics we have been working on for 15 years,” said Stephen Albert Johnston, director of the Biodesign Center for Innovations in Medicine at Arizona State University’s Biodesign Institute. Johnston is also a professor in the School of Life Sciences.

“We are now translating it to clinical applications that we hope could end deaths from cancer,” he said.

Johnston’s startup, Calviri, was established to “provide affordable products worldwide that will end deaths from cancer by combining a unique, highly immunogenic source of neoantigens with a peptide array platform.”

"RNA Transcription and Splicing Errors as a Source of Cancer Frameshift Neoantigens for Vaccines” is the result of the work of Johnston and his team, including first author Luhui Shen and coauthors Jian Zhang, HoJoon Lee and Milene Tavares Batista. Phillip Stafford, Tsukasa Oyama and Bao-Xi Qu performed the early foundational research and statistical analyses for the work.

Johnston’s team is approaching the concept of cancer in a radically new way — by attacking it like an infectious disease. They hypothesized that by using neoantigens resulting from tumor mutations to design vaccines, they could induce the immune system to target cancer with a high degree of specificity. Neoantigens are molecules occurring on the surfaces of cancerous cells that may be recognized by the body’s defensive T cells and attacked.

The new approach offers a triple-defense therapeutic vaccine, which broadly protects, and is specific to both the cancer-type and its unique mutations. This “designer vaccine” is made possible by using chip technology that allows researchers to screen a patient’s blood sample for an antibody response against a library of 200,000 neoantigens.

The work has moved steadily from concept to discovery, to mice studies, to the largest-ever dog cancer vaccine trial, funded by the Open Philanthropy Project. If that is successful, Johnston is eager to move to the first human clinical trials. Johnston said they have the technology to make the human vaccine right now, but even optimistically, it would be five to 10 years before human use.

“This is probably the only approach to a broadly preventative cancer vaccine, so we feel we have to try it,” Johnston said. “The implications of success would be quite large — for dogs and people.”

The research work is the culmination of years of support, including early, high-risk grants from the Department of Defense and the W. M. Keck Foundation.

Find the complete Top 100 in Cancer list here.

Written by Dianne Price

More Science and technology

 

Inside pages of book with an illustration of people doing different tasks around a house

ASU author puts the fun in preparing for the apocalypse

The idea of an apocalypse was once only the stuff of science fiction — like in “Dawn of the Dead” or “I Am Legend.” However…

April 16, 2024
ASU student Henry Nakaana holding a petri dish and a dropper and wearing lab gear.

Meet student researchers solving real-world challenges

Developing sustainable solar energy solutions, deploying fungi to support soils affected by wildfire, making space education more…

April 16, 2024
Tiffany Ticlo wearing a dress, her Miss Arizona sash and crown, sits at a desk in front of a classroom, pointing to a presentation screen.

Miss Arizona, computer science major wants to inspire children to combine code and creativity

Editor’s note: This story is part of a series of profiles of notable spring 2024 graduates. “It’s bittersweet.” That’s how…

April 15, 2024