In some of the honeybees, he suppressed their ability to produce vitellogenin. Then, he compared those bees with normal-functioning bees to see where the bacteria pieces were being transported without it.

Harwood found that normal-functioning honeybee workers had fluorescent bacteria pieces in their glands while those with suppressed vitellogenin did not, suggesting that vitellogenin is vital to the pathogen transfer in both the queen and the workers and may be the mechanism through which honeybees are able to “vaccinate” their larvae.

Honeybee vaccine

The potential application of this discovery is a “vaccine” that has been approved in Europe and is near licensing in the United States, which will allow honeybee queen breeders to feed the queens a solution stocked with pieces of diseases that may be harmful to their colonies. This will allow beekeepers to start disease-resistant colonies, strengthening the local honeybee population.

However, the implications of this discovery may be much more widespread.

“Given that it plays such a central role in producing eggs, vitellogenin is basically found in every animal that produces eggs,” Harwood said. “A lot of these immune system functions evolved early in vitellogenin history, so if we can see it in honeybees, it’s likely going to have similar functions in all other animals. This opens all kinds of doors to research how this protein can be facilitating the transfer of disease resistance from mothers to offspring. We’re at the tip of the iceberg right now in showing how important a role this protein plays in pathogen resistance in bees and other animals.”

An ASU School of Life Sciences Training Initiative funded the research, along with the Research Council of Norway and the Academy of Finland.

Melinda Weaver

Communications specialist, School of Life Sciences