BRAIN center gathers to ponder future, direction

Above: From left to right, Professors Jose L. Contreras-Vidal and Marco Santello pose for a photo with Deans Joseph W. Tedesco and Kyle Squires, of the University of Houston's Cullen College of Engineering and ASU's Ira A. Fulton Schools of Engineering, respectively, at Old Main on the Tempe campus, June 29. Santello and Contreras-Vidal lead the ASU and UH sites for the new National Science Foundation-funded Building Reliable Advancements in Neurotechnology, or BRAIN, an Industry–University Cooperative Research Center. Photo by Jessica Hochreiter/ASU


For all its resiliency and creativity, the human brain is equally fragile and prone to disease. Millions around the world are affected by neurological and neurodegenerative diseases. In fact, a World Health Organization study found eight out of 10 disorders in the three highest disability classes are linked to neurological problems, a figure likely to increase, as the global elderly population is expected to double by 2050.

In response to this growing need, a new collaboration between Arizona State University, the University of Houston and industry members formed to develop and test new neurotechnologies.

Building Reliable Advancements in Neurotechnology, or BRAIN, is an Industry–University Cooperative Research Center dedicated to bringing new neurotechnologies and treatments to market. The center was officially funded earlier this year with a $1.5 million grant from the National Science Foundation, and has already attracted nine industry partners.

BRAIN held its first industry advisory board meeting June 29–30 on ASU’s Tempe campus, bringing together stakeholders to begin charting the course of the collaboration.

“Neurodegenerative diseases are one of the biggest challenges society faces today,” said Professor Marco Santello at the outset of the meeting. “An aim of the center is to not only develop new devices and strategies in the realm of neurotechnology, but validate existing ones as well.”

Santello and Professor Jose L. Contreras-Vidal, directors of the respective ASU and UH BRAIN sites, will lead the center, which includes more than 40 faculty members from ASU’s Ira A. Fulton Schools of Engineering and UH’s Cullen College of Engineering.

The pair defined the center’s five main research areas as neurological clinical research, mobility assessment and clinical intervention, invasive neurotechnology, noninvasive neurotechnology and neurorehabilitation technology.

Santello, who also serves as the director of the School of Biological and Health Systems Engineering, said BRAIN’s areas of interest are intentionally broad as to fully investigate all potential solutions, approaches, and outcomes related to neurotechnology.

Contreras-Vidal, who also leads UH’s Laboratory for Non-invasive Brain-Machine Interface Systems, noted the unique faculty resources that UH and ASU bring together, whose research expertise encompasses neuroscience, invasive and noninvasive interfaces and neuromodulation, neuroimaging, rehabilitation technologies, big data and bioinformatics as well as regulatory science and law and neuroethics.

Though a stable of researchers firmly rooted in neurology, data, device development and clinical trials are essential to BRAIN’s success, equally important is the inclusion of regulatory law experts. To this end, Contreras-Vidal is leading a Research Collaborative Agreement between UH and the Food and Drug Administration.

“Brain activity measurements, such as scalp electroencephalography, have both diagnostic value in and of themselves, and also value as objective endpoints for measuring the efficacy of other medical devices. However, despite their growing importance, very little is known about the constancy and variability of these measurements in real complex settings in healthy individuals and in the patient population. Nevertheless, the efficacy and safety of EEG-based diagnostics and therapeutics depend on such scientific understanding,” Contreras-Vidal said. “Thus, understanding of the population distribution of EEG-based biometrics is regulatory science that contributes to personalized medicine and to the development of better biomedical devices.”

Professor Barbara Evans of UH, whose background includes engineering, earth science and law, will serve as a resource for regulatory processes, issues and strategy, noting it’s sometimes necessary to think five or 10 years ahead.

“This type of work is going to take careful thought about how to address the FDA, and work out regulatory solutions,” said Evans, who is also the director of the Center on Biotechnology and Law at UH. “The burden of neurocognitive diseases is a pressing problem. While there are pharmaceutical solutions which have promise, there is even greater promise in terms of the research at BRAIN and I believe we have to attack these diseases on every front. The main thing I hope to do is help translate wonderful technology to market and help people.”

The nine industry partners include companies such as Medtronic, the CORE Institute, Indus Instruments and Brain Vision LLC, as well as medical institutions such as the Phoenix Children’s Hospital and The Institute for Rehabilitation and Research Memorial Hermann Hospital.

Eric Maas, a Medtronic representative, said his company was drawn to the immense talent pool contained within BRAIN.

“This partnership not only benefits Medtronic, but the world,” Maas said. “Big companies like ours like to go after big problems, but a center like this opens up paths to solve smaller, sometimes overlooked illnesses that deserve attention.”

For Dr. David Adelson, director of the Barrow Neurological Institute and chief of pediatric neurosurgery at Phoenix Children’s Hospital, BRAIN has been a long time coming. Adelson has long since been an advocate for bringing cutting-edge research to clinical care, pushing for a center like BRAIN for some time.

“So much of medicine is focused on adults and not children, and so much of is applicable to pediatric care,” said Adelson, noting that traumatic brain injury is the leading cause of disability and death in children and adolescents in the U.S.

United with invested industry partners, the multifaceted, transdisciplinary research approach of ASU and UH caught the interest of the National Science Foundation as a way to address the big picture challenges of brain research.

“The technical expertise of both ASU and UH goes without saying, but both universities did well in bringing together industry members to get this center off the ground,” said Dmitri Perkins, director of the NSF’s IUCRC program. “Brain research is in general an area of great national interest. The NSF looks for centers with potential to deliver great impact in their areas of study as well as the possibility to work with other IUCRCs, universities and industries, and we see that here.”

Visit BRAIN online for more information about the center, or contact Santello and Contreras-Vidal to discuss partnership opportunities.

More Science and technology


Emily Williamson carries the gonfalon for the School of Computing and Augmented Intelligence down an aisle in a crowded auditorium full of seated graduates

Computer science school looks forward on heels of record-breaking graduation season

This spring, at two packed convocation ceremonies, a crowd of newly minted engineers ebulliently cheered under a rain of…

Large group of people pose for a photo at the top of steps leading up to an outdoor building at the Dedan Kimathi University of Technology campus.

Emerging machine-learning expert leads Kenya AI workshop

What if we already gather all the data we need to help us prepare for disasters, better plan our urban environments and protect…

Galaxy PJ0116-24, known as an Einstein ring

Telescopes in Atacama Desert capture extreme starburst galaxy warped into fiery ring

Ten billion years in the past, a rare population of extreme galaxies formed stars at rates more than 1,000 times faster than our…