Research partnership to bring cutting-edge solar technology to ASU


March 12, 2014

Solar-generated electricity, which can suffer from intermittency issues and related impacts on the grid, is about to blossom at Arizona State University. Work will now begin on the development of a hybrid concentrated solar system, following a contract signing with ASU and AORA to provide research expertise in order to enhance the efficiency of this unique technology.

AORA Solar NA has agreed to install the first ever Solar Tulip hybrid generating facility in the United States on university land, and ASU faculty, research staff and students will work hand in hand with AORA to enhance the system. ASU and AORA Solar partner to install Solar Tulip on ASU's Tempe campus Download Full Image

This project includes the installation of a hybrid concentrated solar power plant that employs a Solar Tulip to concentrate the sun’s energy, turning it into electricity. The system produces power 24/7, moving seamlessly from solar to natural gas or biogas, and is also promising because it uses little to no water while producing a high quality thermal output in addition to power.

AORA Solar NA, a U.S. company, will work with a multidisciplinary ASU team to research options to increase efficiency, improve reliability, utilize the exhaust heat and decrease the cost of this Israeli-developed technology. AORA will construct the demonstration power plant, which includes a tower (approximately 100 feet high) appropriately called the Solar Tulip, on undeveloped land near the Karsten Golf Course in Tempe.

The technology includes a collection of mirrors to concentrate the sun’s rays to heat compressed air to more than 1800 degrees Fahrenheit and drive a gas turbine. The rated output of the system is 100 kilowatts of electricity and an additional 170 kilowatts of thermal energy, about enough energy to power between 60-80 homes.

At night, or when overcast, the Tulip can use a wide range of fuels to heat the air, and is thereby able to produce power and heat around the clock. The system is modular in design, allowing for multiple Tulips to work together, enabling the technology to match growing electric demand requirements. The relatively small footprint makes this system a potentially perfect complement to housing developments or industrial parks, and offers an option to enhance grid stability in the presence of transient renewable generation.

“ASU is a natural partner for us, not only because of its sunny location, but because of the university’s dedication to innovation and sustainability,” said Zev Rosenzweig, CEO of AORA Solar. “We are excited to make our debut here in the United States with this innovative technology, where we will continue to grow and develop the Tulip into a system that cities and industries around the world use to generate continuous energy with renewable resources.

"ASU’s breadth of research capability will undoubtedly allow us to increase output and reduce overall costs, which will bring us to commercial viability. Our confidence in this project is enhanced with the participation of project director, Ellen Stechel, who has spearheaded the concept from the beginning, along with her colleagues Gary Dirks, William Brandt and the ASU LightWorks team.”

AORA Solar is currently operating two additional research facilities, one located in a solar research park in Almeria, Spain, and the original unit in Israel. These systems can be controlled remotely via computer, a unique capability that provides innovative options for possibilities in the U.S. and, indeed, around the world, including developing countries.

The ASU/AORA collaborative relationship will not only bring ASU closer to its goal of becoming carbon neutral by 2025, but it will also benefit students and researchers across multiple fields of study.

“This is another instance in which ASU has brought in cutting-edge technology that its students can learn from and help perfect,” said Sethuraman "Panch" Panchanathan, senior vice president of Office of Knowledge Enterprise Development at ASU. “With this collaboration, the university has established a commitment to integrate students, faculty and staff into research on the Solar Tulip design to bring 24-hour solar/renewable technology to commercialization.”

“The AORA/ASU collaboration provides a multitude of possibilities looking forward,” said Gary Dirks, director of ASU LightWorks. “It is a perfect example of industry and academia coming together and leveraging their unique strengths to create collaborative projects that propel new and viable technology into our energy future. The Solar Tulip has enormous potential, both at ASU and beyond.”

AORA Solar has contracted with GreenFuel Technologies, a Phoenix-based General Contractor specializing in environmental energy projects, to construct the research plant at the ASU campus. The groundbreaking is expected to occur in April, with the anticipated operation date to be sometime in the late September/early October time frame. AORA Solar and ASU look forward to welcoming university peers, along with the public, to a ribbon-cutting event at the Tulip’s completion.

“We are pleased to host the Solar Tulip at the ASU Tempe campus,” said John Riley, sustainability operations officer at ASU. “It is a visually iconic piece of technology, helping to illustrate the way ASU is a destination place for state-of-the-art research and facilities.”

This collaboration was advanced by Arizona State University LightWorks, a research initiative that unites resources and researchers across ASU to confront global energy challenges. The LightWorks team provided the vision of required research, identified the multiple research windows in which AORA will participate and is intimately involved in moving the project from concept to fruition. With a proven track record of swiftly and strategically partnering with a diverse set of institutions, LightWorks continues to help overcome challenges in the fields of solar power, sustainable fuels and energy policy. To learn more about ASU LightWorks, visit asulightworks.com.

ASU students spread the word about space, science


March 13, 2014

It’s not enough for scientists to do science or for engineers to engineer things. They have to be able to communicate with the public and help regular people understand why their work is important.

On Feb. 26, students in the Arizona State University NASA Space Grant program set out to do just that. Space Grant is a NASA-funded university program that supports the research initiatives of undergraduate and graduate students. student discusses research Download Full Image

About 45 student researchers – mostly undergraduates – participated in a poster session outside of Interdisciplinary Science and Technology Building IV. This is in preparation for the Arizona/NASA Space Grant Undergraduate Research Internship Statewide Symposium, and for future presentations. A poster session is a common sight in the professional research world. Researchers print out key information and graphics on a poster roughly 2 by 3 feet and use it to help facilitate discussion about their research results.

“It doesn’t matter what we discover if we do it by ourselves,” said Tom Sharp, associate director for the Arizona Space Grant Consortium and director of Space Grant at ASU. “It could be the most important discovery ever to the handful of people in your field, but it doesn’t matter if you don’t tell people about it.”

The topics of students’ research range anywhere from robotics to modeling the ionosphere to figuring out the best way to teach kids science.

Stephanie Maxwell, a biomedical engineering senior, researched a method to design an at-home fertility test for couples trying to get pregnant and an at-home hormone monitor for women who are already pregnant.

Maxwell’s research topic was motivated by the high number of patients with miscarriages at the Maricopa Integrated Health System hospital.

More than 500,000 pregnancies end in miscarriage each year in the U.S., largely due to hormone imbalance, and more than six million women in the U.S. struggle to become pregnant, Maxwell said.

“The problem with going to see the doctor is that the woman’s prenatal hormone levels are only measured at that one time and place, but during pregnancy, hormone levels can change rapidly,” Maxwell said. Pregnant women with an at-home test could monitor their hormone levels more frequently and possibly prevent miscarriage.

Other students in the program have taken on research with a more iconic NASA feel to it.

Alejandro Miguel Lorenzo, an astrophysics junior, developed a code that calculates the relationship between the mass and radius of an exoplanet (a planet outside of our solar system). The code is the first step in the complicated process of figuring out what these planets are made of.

“This is a quick and easy way to find out what a planet is made of and what its radius should be,” Miguel Lorenzo said. “It’s really cool because we could find a new Earth.”

The code Miguel Lorenzo created could help astronomers map other solar systems, and knowing what kinds of planets are out there helps astronomers answer the question Are we alone?

“How rare are we? Are we really the only people in the billions and billions of stars and planets that are out there?” Miguel Lorenzo asked.

Still other students are working doubly hard to spread the word about science.

Civil engineer Kenneth Magaña taught science to kindergarten through eighth grade students at an after school program at Southwest Elementary school in Phoenix. For two years, Southwest Elementary did not have a regular science teacher, and the eighth graders at the school had hardly any science knowledge at all, Magaña said.

The students at Southwest Elementary are asked to build things, design experiments and sometimes dissect animals. The end goal is to teach them the scientific method and engineering process, and to inspire them to want to pursue science in college, Magaña said.

“In the beginning, the students were stand-offish and messed around, but now they’re really interested,” he said. “They ask us to bring in specific things that they’re curious about, like magnets.”

Magaña’s work is, in part, emblematic of what Space Grant at ASU is trying to accomplish: to inspire future generations of scientists and engineers.

“These students may see themselves in (Magaña) in a way they wouldn’t see themselves in me,” Sharp said. “They see that he can go to ASU and he can be an engineering major. That’s huge.”

Written by Kristen Hwang

Nikki Cassis

marketing and communications director, School of Earth and Space Exploration