Project Humanities 'Top 10 Questions'

July 3, 2013

In an effort to promote conversation and thinking about humanities, ASU is launching “The Top 10 Questions Humanities Will Answer This Year.” Each month a new question will be posed and answered in different formats by individuals across the globe and from multiple perspectives.

Below is the list of questions that have been posed so far: Download Full Image

1. Are we losing our humanity?
Obviously, we cannot physically cut our souls out of our bodies, but is it possible that we might we be “losing” them just the same, and entering the territory of a data-like person?
 Simon Ortiz, Regents’ Professor of English and an Indigenous poet of Acoma Pueblo heritage, says not necessarily. “We’re not losing our humanity. We, as humans, get or act stupid, irresponsible, neglectful and such, but unfortunately that's part of being human,”
 Ortiz says. Read more

2. How does technology affect what it means to be human?
ASU experts examine how technology changes and affects how we communicate and socialize in our everyday lives. From gaming to social networking, technology can broaden what it means to be human and provide different, creative outlets to say who we are and who we want to be. Read more

3. How do the humanities impact business?
Robert Mittelstaedt, dean emeritus of ASU's W. P. Carey School of Business, professor of management and a senior fellow at the ASU Utility of the Future Center, feels that educators must combine business ethics and the humanities to produce graduates who will excel in their fields. “For business majors, we try to ensure a healthy mix of hard-core business subjects and general studies that will help students build the base that will lead them to success – but it is only a start. We all have to keep learning more about the humanities and business over our lifetime,” he said. Read more

4. Why is it important  to know other languages & cultures?
"As we go through life we usually just get to be one person," says Robert Joe Cutter, director of ASU's School of International Letters and Cultures. "But when you study another language and when you use another language, you get to have the opportunity to be a different person. Putting on another language is like putting on a different suit of clothes." Read more

5. How do the humanities help us imagine the future?
What exactly does this elusive “future” look like? Many conjure images of talking robots and cars that transform into crimefighters. The real answer, though, may be right in front of us. "Today, technology is helping us imagine the future," says Denise Meridith, owner of Denise Meridith Consultants. "Technology is enabling us to analyze situations, and devise and test solutions we would not have been able to on our own." Read more

6. Why do we fear what we do not know or understand?
What is fear? What is prejudice? And how are the two related? Director of Project Humanities, Neal Lester, and professor of psychology, Steven Neuberg, shed some light on these questions in this look at how certain human conditions can engender irrational responses and how we can learn to overcome them. Read more

7. How do we determine what is "good" for society?
In economics, public goods are described as services that are available to everyone at no cost. Under this context, the consumption of these goods by a single person does not have an effect on the ability for others to consume this item. A few basic examples of this are fresh air, knowledge and information goods. With this broad of an outline, who determines what is “good” for society and how do they do so? Read more

8. Is social media creating a digitally dependent culture?
Unless you’ve taken a time machine back to the dark ages, you’re well aware that social media is everywhere. The question many ask is whether or not social media has invented a digital culture, or simply removed the red tape to a bevy of information. Read more

9. Is pop culture a direct representation of the views of society?
Everywhere we turn we are surrounded by popular culture. Whether it is on TV in a coffee shop, magazines in a grocery store or music on the radio in the car, we just can’t seem to get away from it. "Pop culture often becomes a manifestation of what we want," says Matthew Whitaker, director for the Center for the Study of Race and Democracy. "Sometimes, however, what we want isn’t good for us.” Read more

Lisa Robbins

Editor/publisher, Media Relations and Strategic Communications


Clues about autism may come from the gut

July 3, 2013

Bacterial flora inhabiting the human gut have become one of the hottest topics in biological research. Implicated in a range of important activities – including digestion, fine-tuning body weight, regulating immune response and producing neurotransmitters that affect brain and behavior – these tiny workers form diverse communities. Hundreds of species inhabit the gut, and although most are beneficial, some can be very dangerous.

In new research appearing in the journal PLOS ONE, a team led by Rosa Krajmalnik-Brown, a researcher at Arizona State University’s Biodesign Institute, presents the first comprehensive bacterial analysis focusing on commensal or beneficial bacteria in children with autism spectrum disorder (ASD). Download Full Image

After publishing earlier research exploring crucial links between intestinal microflora and gastric bypass, Krajmlanik-Brown convinced James Adams, director of the ASU Autism/Asperger’s Research Program, that similar high throughput techniques could be used to mine the microbiome of patients with autism. Previously, Adams had been studying the relationship between the gut microbiome and autism using traditional culturing techniques.

“One of the reasons we started addressing this topic is the fact that autistic children have a lot of GI problems that can last into adulthood,” Krajmalnik-Brown  says. “Studies have shown that when we manage these problems, their behavior improves dramatically.”

Following up on these tantalizing hints, the group hypothesized the existence of distinctive features in the intestinal microflora found in autistic subjects compared to typical children. The current study confirmed these suspicions and found that children with autism had significantly fewer types of gut bacteria, probably making them more vulnerable to pathogenic bacteria. Autistic subjects also had significantly lower amounts of three critical bacteria: Prevotella, Coprococcus and Veillonellaceae.

Krajmalnik-Brown, along with the paper’s lead authors Dae-Wook Kang and Jin Gyoon Park, suggest that knowledge gleaned through such research may ultimately be used both as a quantitative e diagnostic tool to pinpoint autism and as a guide to developing effective treatments for ASD-associated gastrointestinal (GI) problems. The work also offers hope for new prevention and treatment methods for ASD itself, which has been on a mysterious and rapid ascent around the world.

A disquieting puzzle

Autism is defined as a spectrum disorder due to the broad range of symptoms involved and the influence of both genetic and environmental factors; features that often confound efforts at an accurate diagnosis. The disease’s prevalence in children exceeds juvenile diabetes, childhood cancer and pediatric AIDS, combined.

Controversy surrounds the apparent explosive rise in autism cases. Heightened awareness of autism spectrum disorders and more diligent efforts at diagnosis must account for some of the increase, yet many researchers believe a genuine epidemic is occurring. In addition to hereditary components, Western-style diets and overuse of antibiotics at an early age may be contributing to the problem by lowering the diversity of the gut microflora.

In terms of severe developmental ailments affecting children and young adults, autism is one of the most common, striking about one in 50 children. The disorder, often pitiless and perplexing, is characterized by an array of physical and behavioral symptoms, including anxiety, depression, extreme rigidity, poor social functioning and an overall lack of independence.

To date, studies of the gut microbiome in autistic subjects have focused primarily on pathogenic bacteria, some of which have been implicated in alterations to brain function. One example involves gram-negative bacteria containing lipopolysaccharides in their cell walls, which can induce inflammation of the brain and lead to the accumulation of high levels of mercury in the cerebrum.

A new approach

Krajmalnik-Brown and lead author Dae-Wook Kang are researchers in the Biodesign Institute’s Swette Center for Environmental Biotechnology, which is devoted to the use of microbial communities for the benefit of human and environmental health. Their new study is the first to approach autism from a different angle, by examining the possible role of so-called commensal or beneficial bacteria.  

Up to a quadrillion bacteria inhabit the human intestine, contributing to digestion, producing vitamins and promoting gastrointestinal health. Genes associated with human intestinal flora are 100 times as plentiful as the body’s human genes, forming what some have referred to as a second genome. Various environmental factors can destabilize the natural microbiome of the gut, including antibiotics and specific diets.

In the current study, a cohort of 20 healthy and 20 autistic subjects between three and 16 years of age were selected, and their gut microflora from fecal samples analyzed by means of a technique known as pyrosequencing. Pyrosequencing is a high-throughput method, allowing many DNA samples to be combined, as well as many sequences per sample to be analyzed.

Lower diversity of gut microbes was positively correlated with the presence of autistic symptoms in the study. The authors stress that bacterial richness and diversity are essential for maintaining a robust and adaptable bacterial community capable of fighting off environmental challenges. “We believe that a diverse gut is a healthy gut,” Krajmalnik-Brown says.

The new study detected decreased microbial diversity in the 20 autistic subjects whose fecal samples were analyzed. Specifically, three bacterial genera – Prevotella, Coprococcus and Veillonellaceae – were diminished in subjects with autism when compared with samples from normal children. Surprisingly, these microbial changes did not seem directly correlated with the severity of gastrointestinal symptoms.

The three genera represent important groups of carbohydrate-degrading and/or fermenting microbes. Such bacteria could be critical for healthy microbial-gut interactions or play a supportive role for  a wide network of different microorganisms in the gut. The latter would explain the decreased diversity observed in autistic samples.

Bacteria: in sickness and in health

Among the fully classified genera in the study, Prevotella was the most conspicuously reduced in autistic subjects. Prevotella is believed to play a key role in the composition of the human gut microbiome. For this reason, the group undertook a sub-genus investigation of autistic subjects. They found that a species known as Prevotella copri occurred only in very low levels in the autistic samples. The species is a common component in normal children exhibiting more diverse and robust microbial communities.

“We think of Prevotella as a healthy, good thing to have,” Krajmalnik-Brown notes. (Michael Pollan’s recent New York Times Magazine story on the microbiome points to the fact that he is proud that his gut microbiome is rich in Prevotella regarding it as a possible sign of a healthy non-Western diet. )

Jin Gyoon Park, the other lead author, who works in the Virginia G. Piper Center for Personalized Diagnostics under the direction of Joshua LaBaer, conducted a rigorous bioinformatic and statistical analysis of the intestinal microflora. He believes that the microbiome can be mined in future work to find diagnostic biomarkers for autism and many other diseases. Quantitative diagnoses of this sort have so far been lacking for autism, a disease for which subjective behavior indices are typically used to identify the disorder.  

In describing the next steps for the research group, Kang and Park point to more detailed, gene-level analyses aimed at probing bacterial function and further illuminating relationships between human health and the complexities of the microbiome. Additionally, the group will use the current results as a guide for new treatment studies for autism aimed at modifying bacterial composition in the gut.  

A new, interdisciplinary consortium (Autism Microbiome Consortium) has been formed to investigate the underpinings of autism and the gut microbiome, bringing together the combined skills of neurologists, psychiatrists, neuroimmunologists, epidemiologists, pediatricians, geneticists, biochemists, microbiologists and others.

In addition to Rosa Krajmalnik-Brown and James Adams, the group consists of: Jack Gilbert (University of Chicago); Catherine Lozupone (University of Colorado); Rob Knight (University of Colorado and HHMI); Mady Hornig (Columbia University); Sarkis Mazmanian (California Institute of Technology); Tanya Murphy (University of South Florida); Paul Patterson (California Institute of Technology); John Alverdy (University of Chicago); Janet Jansson (Lawrence Berkeley Lab); and KImberly Johnson (University of Colorado). 

Richard Harth

Science writer, Biodesign Institute at ASU