ASU Wi-Fi upgrades to improve security

October 22, 2014

The “asu” wireless network (Wi-Fi) is being upgraded to add new security measures to ensure the safety and security of students, faculty and staff who use Wi-Fi on all Arizona State University campuses and locations. This enhancement will be implemented in the next few weeks.

How is it different?  Desktop view of "asu" WiFi registration screen Download Full Image

The login screens have changed and security measures have been added to protect data and online activity. Once the new "asu" wireless network is activated, you will be required to login from your device(s). The process is the same and will require your ASURITE and applicable password. 

Same 3-step process

The “asu” network has a new look, but still the same three-step process to gain access.

1. Connect to the wireless network and select "asu"
2. Once connected, your device will either open a web browser, or you will need to open one depending upon device – normally it should automatically go to the network login screen.
3. Type in your ASURITE ID and password at the new registration screen.

Other need-to-knows

• After registering once with “asu” you will be able to stay logged in continuosuly – just make sure you stay connected every 30 days or it will prompt you to reregister.

• The “asu” network is not rate limited and provides internet speeds between 8-300 megabits per second, per user, based on device capabilities.

Questions or concerns

If you have questions, feedback or require assistance to connect to the new "asu" network, sign-in to My ASU and select the "Service Center" tab to ask questions, report an issue and get help. If you need immediate assistance, call 1-855-278-5080.

Study charts chemicals for potential health concerns

October 22, 2014

Looking forward in science often requires looking back, evaluating trends to extrapolate future outcomes. A classic case is Moore’s Law, which predicts that the density of components on an integrated circuit will double every 24 months. The estimate has helped guide many developments in the computer industry.

In a new study, Rolf Halden, a researcher at Arizona State University’s Biodesign Institute, examines the trajectory of chemicals appearing as emergent threats to human or environmental health. Rolf Halden Download Full Image

Halden’s meta-analysis of 143,000 peer-reviewed research papers tracks the progress of these chemicals of emerging concern, or CECs, revealing patterns of emergence from obscurity to peak concern and eventual decline, over a span of 30 years.

The study reveals that around 14 years typically elapse from the onset of initial safety concerns about a given chemical to the height of concern and appropriate action. This extended timeline implies protracted exposure to CECs for a large number of people.

The research results appear in the current issue of the Journal of Hazardous Materials.

“To better protect human health and the environment, it is desirable to decrease both the number of CECs entering commerce and the time required to take action,” says the study’s author.

Halden is the director of Biodesign’s Center for Environmental Security, whose primary focus is “to protect human health and critical ecosystems by detecting, minimizing and ultimately eliminating harmful chemical and biological agents through early detection and engineering interventions.”

In past research, his group has evaluated a broad range of common chemicals and assessed their human and environmental impact, including antimicrobial chemicals in personal care products, plastics (and chemicals involved in their fabrication), tobacco, brominated flame retardants and fluorinated synthetic chemicals on prenatal and postnatal health.

Chemical romance

Modern society has grown to depend on an ever-growing welter of chemicals. So many are produced and used each year that preliminary safety testing for human and environmental effects is often inadequate. Unsurprisingly, some of these chemicals return to cause problems, in some cases, severe.

Global industrialization has placed unprecedented stresses on the environment, with a corresponding impact on human health. Worldwide, at least one-quarter of all human diseases are believed to have an environmental component, and CECs represent an important factor contributing to environmentally related disease etiology. More than 40,000 harmful substances are currently ranked as CECs, and around six new compounds of CEC potential are being added to the world’s chemical inventory each day.

The new research homes in on 12 CECs: dichlorodiphenyltrichloroethane (DDT); trichloroacetic acid (TCAA); N-nitrosodimethylamine; methyl tert- butyl ether (MTBE); trichloroethylene (TCE); perchlorate; 1,4-dioxane; prions; triclocarban; triclosan; nanomaterials; and microplastics.

While many CECs are used for industrial applications, others (particularly the antimicrobials triclosan and triclocarban) find their way into an array of household products, including plastic items, toys and articles of clothing.

The findings reveal that many harmful environmental agents show a common pattern of emergence, rising to a level of peak concern and declining to a baseline level. This fact permits the analysis of prior CEC trends as well as the forecasting of future concern.

Belated discoveries

The new research identifies multiple potential stages a CEC chemical may pass through, as its harmful properties become known to the public and within the scientific community:

(a) absence of concern due to ignorance of a potential hazard or risk; (b) increase in concern upon realization of a potential threat or knowledge gap; (c) initial height or peak of concern; (d) decrease in concern as a result of accumulating knowledge and risk management strategies, including behavioral changes, exposure control, voluntary phase-out of substances and regulatory actions taken; (e) establishment of a new baseline of residual concern; (f) potential renewed increase in concern, possibly due to novel adverse effects observed; (g) second peak of concern; (h) decrease to a new baseline level of concern, and so on.

The meta-analysis of peer-reviewed literature considers literature published from more than six decades, starting in the 1950s. The published papers appeared in the Chemical Abstracts Service (CAS) database of the American Chemical Society and were extracted using SciFinder Web software. As Halden’s hypothesis predicted, publication activity regarding given chemicals rises and falls over time, displaying a quantifiable trend. The data also confirm that a chemical may indeed arise more than once.

The research suggests that the rise and fall in concern for CECs of recent interest may be forecast based on the historic data derived from other CECs. For example, rising concern over the safety of nanomaterials is expected to peak no later than 2016, while microplastics (which only began to raise an alarm in 2008), likely will elicit peak concern in 2022, if current trends continue.

Both voluntary abstinence from CECs and regulatory efforts are cited as contributing to the decline in appearance of CECs in the literature over time. Other factors influencing CEC publishing activity include more accurate means of detection, shifts in scientific understanding, new manufacturing techniques that provide viable alternatives to CEC use and publicity efforts driving the public toward or away from particular chemicals. The paper notes a dramatic case of the latter, in the public’s use of antimicrobial products, including the CEC chemicals triclosan and triclocarban, following vigorous advertising campaigns.

As Halden notes, consumer use of antimicrobial products rose from a few dozen to more than 2,000 in the span of 20 years. An increasing preoccupation with the human and environmental safety of these chemicals has prompted a sharp rise in the number of papers investigating their impact.

The study provides an important first step in forecasting the timelines for potentially harmful chemicals to emerge and receive appropriate attention. Halden hopes the data will inform future efforts to safeguard human and environmental health. Areas for improvement include shortening the duration between CEC emergence and maximum concern, and developing new chemical and engineering methods designed to obviate the need for high impact CEC chemicals posing a threat to human and environmental well-being.

“My hope is that the ‘law of pollutant emergence’ uncovered here will not endure for another 60 years. Green chemistry – the design of inherently safe chemicals – points the way to a future of fewer risks and a healthier planet,” says Halden. “It’s a goal too important to lose track of.”

Richard Harth

Science writer, Biodesign Institute at ASU