Skip to main content

Unlocking the mystery of the human brain

ASU professor developing geometry-based computation algorithms to understand brain structures


Yalin Wang is developing modern geometry-based computation algorithms to understand human brain structures. Photographer: Nora Skrodenis/ASU.

December 21, 2015

According to the Alzheimer's Association, the number of people ages 65 and older with Alzheimer's disease may nearly triple, from 5.1 million to a projected 13.8 million by 2050, barring the development of medical breakthroughs to prevent or cure the disease.

Working with world-class neurologists, physicians and psychologists, Yalin Wang, an assistant professor of computer science and engineering at Arizona State University, is developing modern geometry-based software to analyze brain imaging to find the specific brain morphometry change patterns which may discriminate between Alzheimer's disease development and normal aging. This work may help provide computational software to monitor and understand the structural changes related to Alzheimer's disease.

“Our work is mainly with brain morphometry study,” Wang said. “As a noninvasive diagnostic method, imaging plays more and more important roles in neuroscience research. A good resolution magnetic resonance imaging (MRI) image provides detailed information on brain development and neurodegenerative disease progress. Instead of checking each individual image frame, my work builds detailed 3-D brain surface and volumetric representation so that a global view and analysis of brain structure becomes possible.”

Wang's work is deeply rooted in mathematics. During his postdoc period, he worked with several first class mathematicians, including Shing-Tung Yau, a Fields Medal recipient, and Tony F. Chan, a member of the National Academy of Engineering.

“Aided by modern geometry research, my colleagues and I made solid progress to develop robust and efficient computation solutions on brain morphology study,” Wang said. “It, in turn, will expedite drug development to treat neurodegenerative diseases, such as Alzheimer's disease, or help prevent some neural impairment. For example, our research on preterm babies could help predict neurodevelopmental outcomes, thus enabling the design of early intervention treatments — before years of pathological brain development and symptoms occur."

Wang’s research on the brain goes beyond Alzheimer’s. He is working to apply geometry computation to understand human low-level visual functions — in particular, on how a map in one's retina is mapped to the brain occipital cortex.

His work aims to discover the underlying biological structures by imaging and computation. This fundamental research will play an important role in some psychology research projects, such as visual or schizophrenia-related research.

Wang also aims to quantify brain white matter integrity by analyzing diffusion MRI images. The geometry-based software will provide a detailed and unprecedented map of the brain white matter structure, which could help prevent Alzheimer's disease as well as analyze the genetic effects on human brain structure.

His research is supported by six research grants from the National Science Foundation, National Institutes of Health and Arizona Alzheimer’s consortium. He has published 45 journal papers, three book chapters and hundreds of conference papers and abstracts on his work.

“I want to make computers have more intelligence to help improve our quality of living,” Wang said. “The geometry research opens many new doors to solve brand new questions with computers. I think it is something that really motivates me to pursue such research every day.”

The methods developed by Wang and his colleagues can be applied to computer graphics, animation and geometric modeling. As an example, Wang is teaching two computer graphics classes in the School of Computing, Informatics, and Decision Systems Engineering, one of the six Ira A. Fulton Schools of Engineering.

“Our methods can compute surface conformal parameterizations on general surfaces, which helps many geometric modeling problems,” Wang said. “For example, our work can help process geometric structures, 3-D printing and add textures to the products of the 3-D animation and computer gaming industries.”


Erik Wirtanen, erik.wirtanen@asu.edu
480-727-1957
Ira A. Fulton Schools of Engineering

More Science and technology

 

Students seated at desks in a classroom listen to an unseen speaker.

Newly accredited ASU summer program opens up STEM opportunities for underrepresented students

It was Monday afternoon. Spotify was playing pop music in the background and the instructor stood behind a lectern wearing a…

June 20, 2024
An aurora over Earth as seen from space.

ASU scientist part of NASA DYNAMIC mission proposal team to study space weather

A joint proposal from a team of institutions including Arizona State University has been selected for concept studies for NASA’s…

June 20, 2024
Portrait of Norma Faris Hubele.

Professor emeritus strives to save lives on nation’s roadways

Norma Faris Hubele retired from Arizona State University in 2006 after more than two decades teaching statistics and…

June 20, 2024