$5.25M awarded to K-12 educators through Arizona Ready-for-Rigor Project


November 24, 2015

For their leadership in increasing their student and school achievement, more than 2,200 educators from 58 schools in 10 districts received over $5.25 million in performance-based payouts for participating in the Arizona Ready-for-Rigor (AZRfR) Project during the 2014-2015 academic year.

This is the final annual payout of the five-year U. S. Department of Education Teacher Incentive Fund Grant awarded to Mary Lou Fulton Teachers College in 2010. Over the life of the project, more than $20.5 million was awarded to Arizona teacher, principals and assistant principals. More than 2,200 educators from 58 schools in Arizona received performance-based payouts for participating in the Teacher Incentive Fund grant through the Mary Lou Fulton Teachers College. Download Full Image

“The value of this amount goes beyond the dollars as the hard work and dedication of these teachers and schools administrators is helping to develop more effective teachers and leaders in Arizona’s classrooms,” said executive director Virginia McElyea. “As this project winds down, we hope for the continued advancement of educators to increase teacher and student achievement.”

Utilizing TAP: The System for Teacher and Student Advancement, the AZRfR Project provides the participating schools with continuous assistance and support from master and mentor teachers within their schools, professional development opportunities, and competitive payouts based on effectiveness ratings generated through classroom observations and growth in student achievement.

The $5.25 million was awarded to 2,109 teachers and 99 administrators involved in the project during the 2014-2015 academic year. In total, the teachers received $4,900,000; principals and assistant principals received $340,000. Teachers earned an average of $2,334 per payout, which were based on a combination of multiple observations, and student and/or school-wide testing results.

The 58 schools entered the project over a three-year period and the 10 districts earned the following amounts:

• Avondale Elementary: eight schools, 285 educators (teacher, principals and assistant principals), $737,000 in 2014-15 payouts, and $2.54 million during its four years in the project.

• Chinle Unified:  seven schools, 261 educators, $661,000 in 2014-15 payouts, and $2.56 million during its four years in the project.

• Coolidge Unified: six schools, 186 educators, $255,000 in 2014-15 payouts, and $880,000 during its three years in the project.

• Deer Valley Unified: four schools, 168 educators, $470,000 in 2014-15 payouts, and $1.55 million during its four years in the project.

• Gadsden Elementary: eight schools, 217 educators, $714,000 in 2014-15 payouts, and $3.14 million during its five years in the project.

• Glendale Elementary: five schools, 218 educators, $328,000 in 2014-15 payouts, and $1.46 million during its five years in the project.

• Littleton Elementary: six schools, 330 educators, $750,000 in 2014-15 payouts, and $2.38 million during its three years in the project.

• Mesa Public Schools: six schools, 252 educators, $329,000 in 2014-15 payouts, and $1.46 million during its five years in the project.

• Osborn Elementary: five schools, 177 educators, $532,000 in 2014-15 payouts, and $2.59 million during its five years in the project.

• San Carlos Unified: two schools, 114 educators, $293,000 in 2014-15 payouts, and $957,000 during its four years in the project.

Of the $20.5 million distributed over the life of the grant, $1.1 million was awarded to 17 schools during the 2010-2011 school year. The program expanded to 48 schools for 2011-2012, with $4 million in payouts; $5.1 million was distributed to 59 schools for the 2012-2013 school year; $5 million to 59 school for the 2013-2014 academic year, and $5.25 million this year to 58 schools.

Lava rocks offer clues to what's happening far below

ASU researchers say volcanic-island lava differences explained by Earth’s deep interior transport system


November 24, 2015

The rocks found on many islands have settled after a journey that began deep within the Earth.

Brought to the Earth's surface in eruptions of deep volcanic material, these rocks hold clues as to what is going on deep below. A group of former and current Arizona State University researchers say chemical differences found between rock samples at volcanic hot spots around the world can be explained by a model of mantle dynamics that involves plumes — upwellings of abnormally hot rock within the Earth’s mantle — that originate in the lower mantle and physically interact with chemically distinct piles of material. Photo by NASA/Jeff Schmaltz/LANCE/EOSDIS MODIS Rapid Response Team/GSFC Download Full Image

Studies of rocks found on certain volcanic islands, known as ocean island basalts, revealed that although these erupted rocks originate from Earth’s interior, they are not the same chemically.

According to a group of current and former researchers at Arizona State University, the key to unlocking this complex, geochemical puzzle rests in a model of mantle dynamics consisting of plumes — upwellings of abnormally hot rock within the Earth’s mantle — that originate in the lower mantle and physically interact with chemically distinct piles of material.

The team revealed that this theoretical model of material transport can easily produce the chemical variability observed at volcanic hot spots (such as Hawaii) around the world.

“This model provides a platform for understanding links between the physics and chemistry that formed our modern world as well as habitable planets elsewhere,” said Curtis Williams, lead author of the study whose results are published in the Nov. 24 issue of the journal Nature Communications.

Basalts collected from ocean islands such as Hawaii and those collected from mid-ocean ridges (which erupt at spreading centers deep below oceans) may look similar to the naked eye; however, in detail their trace elements and isotopic compositions can be quite distinct. These differences provide valuable insight into the chemical structure and temporal evolution of Earth’s interior.

“In particular, it means that the Earth’s mantle — the hot rock below Earth’s crust but above the planet’s iron core — is compositionally heterogeneous. Understanding when and where these heterogeneities are formed and how they are transported through the mantle directly relates to the initial composition of the Earth and how it has evolved to its current, habitable state,” said Williams, a postdoc at UC Davis.

While a graduate student in ASU’s School of Earth and Space Exploration, Williams and faculty members Allen McNamara and Ed Garnero conceived a study to further understand how chemical complexities that exist deep inside the Earth are transported to the surface and erupt as intraplate volcanism (such as that which formed the Hawaiian islands). Along with fellow graduate student Mingming Li and professional research associate Matthijs van Soest, the researchers depict a model Earth, where in its interior reside distinct reservoirs of mantle material that may have formed during the earliest stages of Earth’s evolution.

Employing such reservoirs into their models is supported by geophysical observations of two continent-size regions — one below the Pacific Ocean and one below parts of the Atlantic Ocean and Africa — sitting atop the core-mantle boundary.

“In the last several years, we have witnessed a sharpening of the focus knob on seismic imaging of Earth’s deep interior.  We have learned that the two large anomalous structures at the base of the mantle behave as if they are compositionally distinct. That is, we are talking about different stuff compared to the surrounding mantle. These represent the largest internal anomalies in Earth of unknown chemistry and origin,” said Garnero.  

These chemically distinct regions also underlie a majority of hot-spot volcanism, via hot mantle plumes from the top of the piles to Earth’s surface, suggesting a potential link between these ancient, chemically distinct regions and the chemistry of hot-spot volcanism.

To test the validity of their model, Williams and coauthors compare their predictions of the variability of the ratios of helium isotopes (helium-3 and helium-4) in plumes to that observed in ocean island basalts.

Helium-3, or 3He, is a so-called primordial isotope found in the Earth's mantle. It was created before the Earth was formed and is thought to have become entrapped within the Earth during planetary formation. Today, it is not being added to Earth’s inventory at a significant rate, unlike 4He, which accumulates over time.

Williams explained: “The ratio of helium-3 to helium-4 in mid-ocean ridge basalts are globally characterized by a narrow range of small values and are thought to sample a relatively homogenous upper mantle. On the other hand, ocean island basalts display a much wider range, from small to very large, providing evidence that they are derived from different source regions and are thought to sample the lower mantle either partially or in its entirety.”

The variability of 3He to 4He in ocean island basalts is not only observed between different hot spots, but temporally within the different-aged lavas of a single hot-spot track.

“The reservoirs and dynamics associated with this variability had remained unclear and was the primary motivation behind the study presented here,” said Williams.

Williams continues to combine noble gas measurements with dynamic models of Earth evolution working with Sujoy Mukhopadhyay (professor and director of the Noble Gas Laboratory) at the University of California at Davis.

Written by Nikki Cassis